231 research outputs found

    Disentangling Scaling Properties in Anisotropic and Inhomogeneous Turbulence

    Full text link
    We address scaling in inhomogeneous and anisotropic turbulent flows by decomposing structure functions into their irreducible representation of the SO(3) symmetry group which are designated by j,mj,m indices. Employing simulations of channel flows with Reλ≈70_\lambda\approx 70 we demonstrate that different components characterized by different jj display different scaling exponents, but for a given jj these remain the same at different distances from the wall. The j=0j=0 exponent agrees extremely well with high Re measurements of the scaling exponents, demonstrating the vitality of the SO(3) decomposition.Comment: 4 page

    Direct Identification of the Glass Transition: Growing Length Scale and the Onset of Plasticity

    Full text link
    Understanding the mechanical properties of glasses remains elusive since the glass transition itself is not fully understood, even in well studied examples of glass formers in two dimensions. In this context we demonstrate here: (i) a direct evidence for a diverging length scale at the glass transition (ii) an identification of the glass transition with the disappearance of fluid-like regions and (iii) the appearance in the glass state of fluid-like regions when mechanical strain is applied. These fluid-like regions are associated with the onset of plasticity in the amorphous solid. The relaxation times which diverge upon the approach to the glass transition are related quantitatively.Comment: 5 pages, 5 figs.; 2 figs. omitted, new fig., quasi-crystal discussion omitted, new material on relaxation time

    Dynamics of the vortex line density in superfluid counterflow turbulence

    Full text link
    Describing superfluid turbulence at intermediate scales between the inter-vortex distance and the macroscale requires an acceptable equation of motion for the density of quantized vortex lines L\cal{L}. The closure of such an equation for superfluid inhomogeneous flows requires additional inputs besides L\cal{L} and the normal and superfluid velocity fields. In this paper we offer a minimal closure using one additional anisotropy parameter Il0I_{l0}. Using the example of counterflow superfluid turbulence we derive two coupled closure equations for the vortex line density and the anisotropy parameter Il0I_{l0} with an input of the normal and superfluid velocity fields. The various closure assumptions and the predictions of the resulting theory are tested against numerical simulations.Comment: 7 pages, 5 figure

    Computing the Scaling Exponents in Fluid Turbulence from First Principles: Demonstration of Multi-scaling

    Full text link
    This manuscript is a draft of work in progress, meant for network distribution only. It will be updated to a formal preprint when the numerical calculations will be accomplished. In this draft we develop a consistent closure procedure for the calculation of the scaling exponents ζn\zeta_n of the nnth order correlation functions in fully developed hydrodynamic turbulence, starting from first principles. The closure procedure is constructed to respect the fundamental rescaling symmetry of the Euler equation. The starting point of the procedure is an infinite hierarchy of coupled equations that are obeyed identically with respect to scaling for any set of scaling exponents ζn\zeta_n. This hierarchy was discussed in detail in a recent publication [V.S. L'vov and I. Procaccia, Phys. Rev. E, submitted, chao-dyn/9707015]. The scaling exponents in this set of equations cannot be found from power counting. In this draft we discuss in detail low order non-trivial closures of this infinite set of equations, and prove that these closures lead to the determination of the scaling exponents from solvability conditions. The equations under consideration after this closure are nonlinear integro-differential equations, reflecting the nonlinearity of the original Navier-Stokes equations. Nevertheless they have a very special structure such that the determination of the scaling exponents requires a procedure that is very similar to the solution of linear homogeneous equations, in which amplitudes are determined by fitting to the boundary conditions in the space of scales. The re-normalization scale that i necessary for any anomalous scaling appears at this point. The Holder inequalities on the scaling exponents select the renormalizaiton scale as the outer scale of turbulence LL.Comment: 10 pages, 5 figs. to be submitted PR

    Shell Model of Two-dimensional Turbulence in Polymer Solutions

    Full text link
    We address the effect of polymer additives on two dimensional turbulence, an issue that was studied recently in experiments and direct numerical simulations. We show that the same simple shell model that reproduced drag reduction in three-dimensional turbulence reproduces all the reported effects in the two-dimensional case. The simplicity of the model offers a straightforward understanding of the all the major effects under consideration
    • …
    corecore